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ABSTRACT

A simple physical model of residential energy consumption provides the

framework for an exploration of segmented regression models fit by least

squares. The energy model is a generalization of a linear, single change-

point model such as that considered by Hinkley (1971).

Some simple geometric measures of nonlinearity and nondifferentiability

are proposed. These measures are related to the construction of approximate -

confidence regions for the parameters of a general segmented model. In

addition, the relation shown between these measures and those proposed by

Bates and Watts (1980) may be useful in analyzing continuously differentiable

models. -
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SIGNIFICANCE AND EXPLANATION

Simple procedures are presented for assessing the severity of non-

linearity in a regression model involving a function which is nondifferen-

tiable with respect to the unknown parameters. The nonlinearity measures

proposed indicate the validity of standard approximations which may be used to
T,.

*.' determine the accuracy of parameter estimates. The proposed measures are

* related to existing measures of nonlinearity, but can be applied to a broader

class of models, and in some cases may be easier to calculate.

The methods developed are motivated and illustrated by a simple model of

residential energy consumption. This model has been the basis for measure-

ments of energy conservation in several studies.
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MEASURES OF NONLINEARITY
FOR SEGMNMTED REGRBSSION MODELS

Miriam L. Goldberg

1. Introduction.

The object of this paper is to develop the geometry of nondifferentiable

least squares problems, and within that framework to indicate same simple

procedures for assessing the effects of nonlinearity. Our exploration of

piecewise differentiable regression models is based on a simple model which

arises in the context of residential energy analyses. This model is a

generalization of a linear change-point model.

We begin by describing the motivating model. After reviewing some basic

elements of the geometry of nonlinear regressions, we then examine the

behavior of the residual sum of squares function for the energy model, and

relate this function to approximate confidence intervals for the unknown

parameters. Finally, we consider some measures of nonlinearity, which

indicate the validity of these approximations, and which are appropriate for

nondifferentiable models. In addition, these measures may be useful for

certain types of continuously differentiable models.

Sponsored by the United States Army under Contract No. DAAG29-80-c-0041.
This material is based upon work supported by the National Science Foundation
under Grant No. MC-7927062, god. 2, and by joint funding from the Ford
Foundation's State Env.ronmental Management Program and the New Jersey
Department of Energy.
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2. The Rnergy Model

A simple model of residential energy consumption assumes daily

consumption is constant at the baseload level a as long as the average

outdoor temperature T is above a reference temperature T, and increases In

proportion to T - T for T < T. With Y. representing average daily fuel

consumption for the N. days of month a, our model Is expressed formally as

Y - a 0 B H (T) + C , (2.1)m m

where
m

H 1 (T-T ) V(T 1C ) , (2.2)

I is the indicator function and e is a rando disturbance. The variable

H (T) represents the average daily base-T degree-days for the month. The

temperature T is interpreted as the maximum outdoor temperature at which the

furnace Is required to heat the house, and 0 as the house's effective heat

loss rate.

Models of this type have been the basis for analyses of energy

consumption patterns In a large number of gas heated houses, and In a saller

number of oil- and electrically-heated houses. The consumption data Ym are

derived from a customer's fuel bills. The daily temperature data Tmj" In

Integer degrees Parenheit, are obtained from a nearby U.S. Weather Bureau

station (National Oceanic and Atmospheric Adinistration, monthly).

Equation (2.1) has also been applied to aggregate data, with ym

representing fuel consumption per household for month m. For utility- or

state-ilde aggregates, a different definition of the degree-day variable

o,

See, e.g., Fels et al (1981), Dutt, Lavine et al (1982), and Socolow (1978).
0*

See Fels and Goldberg (1982) and Goldberg and Fels (1982).
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H9(r) is used, to account for the lag introduced by moters' being read on

Wn
different days throughout the month:

RnT M . 11 (2.3)Is N
3 3 m-1

(N+l"j) + J

a -1

For both single-house and aggregate analyses, the major use of the model

defined by Equation (2.1) is in determining the normalized annual consumption

r. The index r is given by

F - 365 (+OH o(T)) (2.4)
0

where H (r) is the long-term (several-year) average of daily degree-days0

base t.

If consumption data were available on a daily, rather than monthly,

basis, so that N a 1, Equation (2.1) would represent a simple change-pointa

regression with slope zero over one region. Such a model has been analyzed in

detail by Hinkley (1971). In addition to the suation in Equation (2.2) or

(2.3), a second important difference between the energy model considered here

and Hinkley's change-point model is in the restriction placed on the

temperature data Tmj, as discussed below in Section 5.

For the energy model, we will consider estimation of the reference

temperature T, baseload a, and heating rate by the method of least

squares. Placing the model in a more general context, we treat it as a

special case of a piecewilse differentiable model. We will explore the

behavior of such models in the framework of general nonlinear models.

Naturally, many exIsting results for simple change-point models relate closely 7 -

to this problem. We will continually return to the energy model defined by

Equation (2.1) for illustration.

-3-
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Our emphasis is on methods for assessing the validity of approximate

confidence intervals for the model parameters. Two approximation methods are

considered. One is based on the asymptotic normality of the least squares S

estimates, and implicitly on a linearization of the model function. The other

is based on the asymptotic chi-squared distribution of the likelihood ratio,

and uses regions bounded by contours of constant Residual Sum of Squares

(RSS). In developing methods for assessing the adequacy of these

approximations, we will rely on the geometry of nonlinear least squares.

3. The Geometry of Nonlinear Least Squares

The geometrical approach has been developed extensively for continuously

differentiable models, and will be applied here to the general piecewise

differentiable model. The general nonlinear model with unknown p-dimensilonal

parameter 8 can be written in matrix form as

Y M (8) + C (3.1)

3(c) - 0 (3.2)
"; 02

EZc'C) - a 1 (3.3)

. Here, Y, 11, and C are n-dimensional vectors, such that ?l" the mth

- component of T1, depends on observations xm as well as on 8. We further

.* assume that the random disturbance C has a Gaussian distribution. Note that

C enters the model linearly; the nonlinearity is only in the model function n.

For the energy model given by Equation (2.1), e = [,,T,]' (with the

* apostrophe denoting the transpose) and

a =l + 81(r), (3.4)

where H is the n-dimensional vector with components H. given by Equation

" (2.2) or Equation (2.3) and I signifies an n-dimensional vector of ones.

The observations x. are vectors of daily temperatures Taj.

-4-
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For the general model, as 8 ranges over the parameter space 0, the

function 1S) sweeps out a p-dimensional surface or "solution locus* L in

the n-dimensional sample space:

L - (11(e) - e •el.:!
NL

We define the derivative vector in and the Hessian matrix 11 as ia

* LN
Lnxp

(Throughout this paper an expression in square brackets indicates a matrix

with components given by the subscripted expression, such that ml,2,...,nI

i,Jinl,2,...,p.)

The least squares estimate 8 is the solution to the normal equation

'" 1'le) 1( - n1e)) - 0.

.4 That is, the residual vector Y-n(8) is normal to the tangent plane at

0le), the tangent plane being the linear span of the column vectors which
• A", .a a

make up the matrix 11. In this sense, M18) is the projection T L of

Y onto the solution locus L. The estimate 8 is determined by pulling back

the projection 1(8) YL to the parameter space e.

To quantify the severity of departures from linearity, Dates and Watts

i. (1980) propose measuring the nonlinearity of a model in terms of 'the curvature

of the solution locus. For any direction v in the parameter space, the

tangent tv and acceleration vector av at 8 are defined by

t -; l()v (3.5)

a = (v'fle)v] nx . (3.6)
ev m

. ~The cturvature K_ in the v direction Is then defined as 1.

. .". . ."
."-' . . . . .
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K l 3.7)• v i l2-
v It 12

v

The relative curvature y is obtained by multiplying Kv  by the standard

radius • where 2  is an estimate of the error variance a 2 In the

present work, a is always obtained from the residual sum of squares RSS

from the regression, as s2 . RSS(;)/(n-p). Decomposing the acceleration

vector into components a and a respectively parallel and normal to the
;!.~~~~ vetritvopnnsa

tangent plane, yields analogous definitions for tangential and normal
"I K and 1 I 1

curvatures K vand Kv , and relative curvatures Yv and yv"V
Noting that the tangential acceleration component is caused by the

parameterization chosen, while the normal component is independent of this

* choice, Sates and Watts refer to the parallel K as the "parameter-effects"

vv---. curvature, and to the normal K as the "intrinsic" curvature. That is, the"
V

acceleration component normal to the solution locus L describes the bending

of the p-dimensional surface L in n-dimensional Euclidean space. The

acceleration component parallel to the tangent plane simply reflects the

meandering within the solution locus of the "lifted line"-

n M {r(e+rv) : r e R).

The parameter-effects curvature can in principle be reduced or removed by

an appropriate reparameterization (Bates and Watts, 1981). By contrast, we

may consider a model to be intrinsically nonlinear with respect to the

parameter e if the normal curvature (or acceleration) in the direction of
2 2

" is nonzero. This is equivalent to requiring that the vector a e

(composed of the jth diagonal elements of the matrices ri(M)) does not lie in
U

the plane spanned by the columns of. 0).

S• -° ' p - * .° °* * " * .° ." .
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4. Nonlinearity in the Energy Model.

Many of the problems introduced by nondifferentiability can be understood

in terms of the general geometrical framework just described. For the energy
model defined by Equation (2.1), the model function n 's given by

Equation (3.4). Thus,

* ~~ 30 3T~~1(G,,r) - [ 3 r (4.1)

- [1 I H(T) I BF(T)].

The degree-day derivative F is obtained by dropping the terms of the form

(T - T ) from Equation (2.2) or (2.3). For the single house, we havemj
N

1 m. m
F r) " N- I(Tm ( r).

That is, F is (arbitrarily) defined to be right-continuous at discontinuity

points Tmj, which occur only at integer Farenheit degrees. The step-

function F. is thus the empirical distribution function of outdoor

temperatures Tmj for month m, and H. is the convolution of temperature

with Fin

The Hessian Tifor Equation (2.1) is given by

[0 0 0 1
- 0 0 F(T) (4.2)

0 Fmr) M 3 F /3T

2 2
The only nonzero diagonal element is 3 2/3t - 08F/3T, which i a delta

function with spikes at discontinuity points of F (I.e., at irategers). Thus,

the energy model is intrinsically linear with respect to a and B, but
intrinsically nonlinear with respect to T. Between any two successive

integers, however, the model is also intrinsically linear In T, since

03F/OT - 0. Hence, the solution locus L (and in this sense the model) is

piecewilse planar. However, the model function n is nonlinear in 0 as well

-7-
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as in T, since n r/3B3T is nonzero. Thus, in addition to whatever intrinsic

nonlinearity results from the discontinuities in F(r), we expect to find

effects of nonlinearity in the paramneterization.

5. Impact of Wonlinearitles on Approximate Confidence Regions

Approximate confidence regions for a q-dimensional linear combination

C8 based on the asymptotic normality of e are given by the set of0

satisfying
A s-i 1 A 2

(e-8)1C1{C(1'r)- C} C(0-0) 4 a F.(5)

In Equation (5.1), r~is the derivative evaluated at 0, 1 denotes a

probability, and F the 1-w quantile of the F-distribution with q
q,n-p

and n-p degrees of freedom. If the model function nl Is linear, the region

*defined by Equation (5.1) has exact confIdence level 1-w even In finite

samples. The small-sample validity of' auch confidence regions is affected by

both parameter-effect and intrinsic nonlinearity.

By contrast, the sum-of-squares based regions are unaffected by parameter

effects. For continuously differentiable q-dimensional functions g,

such a region is the set of g(O) such that

Rss(e) -- Rss(e) -p F
A *~ (F T (5.2)

RSS(e) q q, n-p

*or nRSSe 14 RSS(8 (0+ -_ F' (5.3)
n-p q,n-p

1-8



Note that confidence intervals for a single component e are obtained from

Equation (5.3) by taking q - 1 and g(e) - e .

The region defined by Equation (5.3) is the Inverse image in the

parameter space e of the intersection of the solution locus L with a sphere -

centered at Y whose squared radius is RSS(8)(1 + "-- F ). If then-p q,n-p

solution locus is flat, the region determined by Equation (5.3) has exact

confidence level 1-w in finite samples. Thus, the small-sample validity of

the sum-of-squares approximate confidence region depends on how sharply the

solution locus departs from the approximating tangent plane over the region of

interest.

For continuously differentiable models the use of confidence regions

based on Equation (5.1) or (5.2) is well-established. The asymptotic validity

of confidence regions defined by Equation (5.1) was proved by Fisher (1925),

and the validity of regions determined by Equation (5.2) by Wilks (1938).

For small samples, Beale (1960) proposed an inflation factor v for the

right-hand side of Equation (5.2) which yields a conservative confidence

region for the case q p. Beale's factor v is given by

ji-1+ n (p+2) I (5.4)
(n-p) p NI

Bates and Watts (1980) showed Beale's nonlinearity measure N to be equal to

I
one quarter the mean square relative intrinsic curvature y , and showed also

that the factor P was very close to one for a wide variety of data sets.

For cases where the parameter-effects curvature is slight, Hamilton,

Watts and Bates (1982) showed how to approximate the sum-of-squares region

given by Equation (5.2) using an elliptical region similar to that given by

Equation (5.1), but with a correction for the intrinsic nonlinearity. Bates

and Watts (1981) suggested ways of choosing parameter transformations to

reduce the parameter-effects curvature, rendering the Gaussian approximation

-9-



regions defined by Equation (5.1) more accurate. Bates and Watts (1980)

indicated that the sum-of-squares regions may be considered reliable if the

intrinsic curvature K is small compared to 1/ /s2w , the normal-
p, n-p

I
based regions if the parameter-effects curvature X is also small compared

to this quantity.

In using the approximate confidence regions defined by Equation (5.1) or

(5.2) for a piecewise differentiable model, we have two main concerns of a

theoretical nature. The first is to establish the asymptotIc validity of

these confidence regions for our non-regular case. The second is to find ways

of assessing the severity of both parameter-effects and intrinsic nonlinearity

for nondifferentiable models with finite samples. We will deal briefly with

the first concern before proceedIng to our main purpose, the development of

nonlinearity measures for segmented models.

Hinkley (1969) proved the asymptotic normality of least squares estimates

for the simple change-point linear regression. His methods are not quite

applicable to the model defined by Equation (2.1), because the observations

(temperature data) for this model are taken only at certain fixed points

(integers), while Hinkley's proof assumes the observations may come

arbitrarily close to the change point. For the general plecewilse

differentiable model with discontinuities in the derivative at fixed points,

the present author (Goldberg, 1982) has shown that the least squares estimates

are asymptotically normal, except when the true parameter value i at a point

of discontinuityi in that case, the normal approximation yields asymptotically

conservative confidence Intervals.

The asymptotic normality justifies the use of sum-of-squares contours to

define likelihood regions. For higher confidence levels or for more strongly

skewed PSS functions, the likelihood approach should be more accurate, in the

-10-
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sense of giving regions with coverage probability closer to the nominal

level. Hinkley (1969) found empirically that for his model the likelihood-

based regions were indeed more accurate than the normal-approximation regions.

6. Visual Indicators of Nonlinearity

We turn now to the question of how to assess the severity of nonlinearity

in a particular small sample. we begin by considering some useful display

techniques.

One way to study the effects of nonlinearity in the energy model is to

examine the residual sun of squares RSS as a function of the "nonlinear"

parameter T. If our model function n were linear in T, then RSS(T)

would be a quadratic function. Instead, we expect to see a more irregular

function, with kinks at discontinuity points of -h, that is, at each Integer

value of T.

Figure 1 shows a plot of S versus the change point T for a typical

data set fit to Equation (2.1). Above the maximum and below the minimum

observed temperature Tmy} the function is flat, indicating that the reference

temperature T is not identifiable if it falls outside the range of the

temperature data. In the region of low T, where these data are very sparse,

we do see the somewhat jagged behavior anticipated. For similar change point

models, Hudson (1966) and Hinkley (1971) have also shown RSS curves of this

general shape, but with a more pronounced scalloped appearance.

Overall, and especially in the neighborhood of the minimum (i.e., in the

neighborhood of the least squares estimate T) the RSS function looks fairly

The data are for the the New Jersey Residential Gas Heating Sector,
August 1969-July 1970.

- 1-
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Figure 1: Residual Sum of Squares RSS(T)
Versus Reference Temperature T.
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smooth, offering some hope that procedures which have been developed for

continuously differentiable models may still be useful in the present

application.

In particular, in addition to the inference procedures which are the

focus of the present work, fitting procedures for smooth models can be

extended to the model defined by Equation (2.1). The fitting procedure used

in this study, discussed by Dutt, Fels et al (1982) and in more detail by the

present author (Goldberg, 1982), is based on Newton's method. This procedure

represents a modification of a method described by Hinkley (1969) for simple

change-point models, and in most cases is more efficient.

Figure 2 shows three residual-sum-of-squares curves. The first is the

original curve RSS(T). The second RSSk is the residual sun of squares for

an approximate model function

~a(c,8,) d i + O8(1() + (T-k) F(k)1.

The function n extends to the whole real line the planar function which
k

defines i(iBr) in the integer interval [k,k+1 containing T. For any

integer k, the approximation RSSk coincides with the original function RSS

for values of T in [k,k+1]. The curve RSS. shown coincides with PBS in
k

the interval containing the minimum. The third curve shown is the quadratic

approximation RSSQ based on a linearization of the model function n.

The discrepancy between the original RSS(T) and the extension RSS.(T)
k

stems from the departure of the solution locus from the plane spanned by 1,

*(k), and F(k). Thus, the divergence of RSS from RSS. is an indicator of
k

intrinsic nonlinearity. The discrepancy between RSSA based on the planar
k

extension and RSSQ based on the lisear approximation to the model function

reflects parameter-effects nonlinearity. Both types of nonlinearity appear

frm Figure 2 to be slight.

-13-
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Figure 2: Residual Sum of Squares Function RSS, Extension
RSSj, and Quadratic Approximation RSSQ
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See caption to Figure 1. !
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Another way to see nonlinearity is to examine two-dimensional projections

of the sun-of-squares regions defined by Equation (5.3). If the boundary of

such a projection is not elliptical, this is evidence of strong nonlinearity.

Figure 3 shows several such regions for parameters of the energy model, for

varying values of F, 9 , for the data set displayed in the first two
W

figures. For small values of F1,9, corresponding to confidence levels of

0.99 or less (w ) 0.01) the regions shown in Figure 3 all look fairly

elliptical. Only at rather high confidence levels, which are of little

practical interest, do the contours become appreciably distorted from the

elliptical ideal.

By itself, unfortunately, the shape of the sum-of-squares regions gives

only limited information about the nature of the nonlinearity. If these

regions are not elliptical, the Gaussian approximation (Equation (5.1)) is

clearly inadequate to give confidence regions. At the same time, interpreting

the sum-of-squares regions themselves as confidence regions (of the indicated

confidence level) may or may not be valid. The reason for this ambiguity is

that the distortion from the ellipse may reflect the shape of the solution

locus L itself, (indicating strong intrinsic nonlinearity), or might simply

result from a nonlinear mapping between L and the parameter space "

(parameter-effects nonlinearity).

Conversely, certain types of intrinsic and parameter-effects

nonlinearities will still yield elliptical contours. Thus, the breakdown of

either approximation (5.1) or (5.3) may not be manifest in simple examination

of regions such as those drawn in Figure 3.

Somewhat more informative is a comparison of the (projected) sum-of-

squares regions defined by Equation (5.3) with the elliptical regions defined

by Equation (5.1), for various values of 7r. Here again, though, the

implications of the visual comparison are ambiguous. A particular effect may

1 -15-
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result either from the falling off of the solution locus from the tangent

plane (Intrinsic nonlinearity) or from the distortion of coordinate lines

within the plane (parameter-effect nonlinearity).

What such a comparison does reveal Is how close the normal-theory regions

come to the sum-of-squares regions, which in general are more reliable. The

two sets of confidence regions may be compared more conveniently by plotting

for each parameter component the one-dimensional projections of the two

regions onto the coordinate axis, as a function of AFT-9 A set of such1,n-

plots for the parameters of the energy model is shown in Figure 4, for our

example data set.

Consistent with the indication from the previous figure, Figure 4 shows

that for confidence levels of practical interest, say 1-w C 0.999, the

Gaussian-based confidence intervals (indicated by 'N' for Normal) are in

good agreement with those based on the sum-of-squares methods for all three

parameters a, B, and T of the basic model. For the important index r,

the two sets of confidence intervals are in virtually perfect agreement even

for extremely high confidence levels. Thus, provided the sum-of-squares

method gives accurate confidence intervals for this data set, the Gaussian

approximation also appears to be trustworthy.

The visual indicators just described are unsatisfying in two major

respects. First, they are only qualitative, giving no firm basis for

determining whether the Gaussian or sum-of-squares regions are justified as

confidence regions. Secondly, they require evaluation of sum-of-squares

contours. In many cases, a justification for the normal approximation is

sought precisely because evaluation of sum-of-squares contours is difficult or

costly.

-17-



Figure 4: Confidence Intervals for Parameters of the

Energy Model by the Gaussian Approximation (N)
and-the Sum-of-Squares Method (S) for Various

Confidence Levels
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The factor tff W{ See caption to Figure 1.
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We address these difficulties in the remainder of this paper. First, in

Section 7 we introduce two simple quantitative measures of intrinsic

nonlinearity which are particularly suitable for nondifferentiable models. We .

then relate these measures to "effective curvatures" for segmented models, in

Section 8, and apply the effective curvatures to the energy model in Section

9. Finally, in Section 10, we suggest an alternate approach, which yields

effective parameter-effects as well as intrinsic curvatures.

7. Quantifying Nonlinearity

As noted previously, the small-sample validity of the approximate

confidence intervals determined by Equation (5.3) depends on how nearly planar

the solution locus L is over the region of interest. For the continuously

I
differentiable model, the intrinsic curvature K measures the departure from

v

the tangent plane in terms of the rate of change, normal to that plane, of a

tangent vector tv. For both segmented and smoother models, this departure can

be measured in other ways, two of which are considered in this section.

A direct measure of the departure from the plane is the distance A

between the tangent plane at T1(;) and a point n(6) at tihe edge of the

region of interest - that is, for 0 lying on a sum-of-squares contour as

defined by Equation (5.3). The gap is easily evaluated at a point M(8) as

the square root of the residual sum of squares from a regression of the secant

.(0) - ,(O) on the derivative matrix n(O), which defines the tangent plane

at n(;). The solution locus may be considered "nearly planar", and the sum-

of-squares region an adequate approximate confidence Interval, if the gap A

is small compared to the radius of the sphere defining the region. This

radius, as given by Equation (5.3), is /(1+f)RSS(;), where
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f " qF /(n-p). Alternatively, following Bates and Watts (1980), we may
q, n-p

simply compare the gap A with IfRSS(8), the radius of the sphere's

intersection with the tangent plane at n(O).

For each of 75 aggregate data sets fit to Equation (2.1), the maximum gap

A was evaluated on the "one-standard-errorm contour defined by f - 1/(n-p)

i.e., q 1, F 1), for which f RSS(0) - s. The procedure used to
q n-p

compute A is described below in Section 7. The ratio of A to
max max

s = RSS(8 )/(n-3) ranged from 0.02 to 0.25, with a median of 0.08.

Thus, along this contour, the greatest departure of the solution locus from

the approximating tangent plane was typically less than 10% of the distance

from a point on the contour to n(8), and at worst was 25% of this

distance. On this basis, the planar approxima- tion appears to be reasonable

for most data sets arising for the energy model.

The gap A can be used as a measure of intrinsic nonlinearity for either

a segmented or a smooth model. Note also that the gap indicates the total

intrinsic nonlinearity in a particular direction, whether caused by a

continuous or a discontinuous change in the derivative i.

A second measure, which reflects the effect of nondifferentiability

alone, is the angle + between the two limiting tangent planes at a point of

* -." discontinuity of ;. In the case of a piecewise planar model such as that

given by Equation (2.1), * is simply the angle between planar segments. For

the general model with discontinuous derivative in T, we denote by U. and

U+, respectively, the left and right-hand limits of at a point of

discontinuity, and by V the matrix of derivatives of n with respect to the

other parameters at that point. Then the angle at the discontinuity is given

by
" (UiV) '(u+lv)

cos ( ) Iulv , ,1u +v)
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where the notation IV denotes the component orthogonal to V.

For the same 75 aggregate data sets fit by Equation (2.1), the angle

evaluated at the integers k and k+1 bracketing the estimate T ranged

from 0.02 to 0.13 radians, with a median of 0.06 radians. These small angles

again Indicate that the intrinsic nonlinearity is slight for this model.

However, the impact of the bend in the solution locus depends not just on the

magnitude of a single bend, but also on how many bends there are in a region

of interest.

Certainly other direct measures of nonlinearity could be considered for

segmented models. The appeal of the two proposed here will emerge as we

proceed.

8. Effective Curvature Measures for Segmented Models

The measures described in the previous section allow us to associate - r

numbers with nonlinearity, but still leave us with the question of what the

numbers mean. How small must the gap A or angle * be for the intrinsic

nonlinearity to be considered negligible? As noted above, the angles #, and

the spacing between points of discontinuity n together indicate the severity

of intrinsic nondifferentiablity. The present author (Goldberg, 1982) has

related the angles and spacing to the shape of the observed likelihood

function, and to the performance of fitting procedures. For purposes of

inference, however, we are concerned with the total intrinsic nonlinearity.

Hence, we focus now on the gap A, which incorporates both instantaneous and

continuous changes in the derivative n.

By considering the relation of the gap A to the Intr~ns.ccratraBy ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ A cosdrn-h eaino h a oteit isc curvature, as

defined by Equation (3.7), for smooth models, we will obtain an expression for

the effective curvature of segmented models. Effective curvatures make It
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possible to think of such models in the same terms as the more familiar smooth

models.

In the smooth case, we can approximate the geodesic curve from n(O)

to n(e) by a parabola centered at n(O), as illustrated in Figure 5.

2
A parabola defined by y cy has curvature at y, " 0 given by

2 c

lal = 1[0O_2c] I1

Itl I (1,0]12

- 2c

Y2
2

Y1

The curvature at the center can therefore be determined from any point

(y 1 1 y 2 ) of the parabola.

For the parabola which ideally represents a cross-section of the solution

locus, yl and y 2  correspond respectively to the tangential and normal

components of the secant n(e) - e(). Thus, denoting by P the projection

matrix onto ;(8), and by C(O) the secant n(e) - n(8), we have

K"-2I(I-P)U(e)l

2A
IPC(e)

2

2A -]

IPC()I
2

Hence • m 1 (8.2)

To complete the connection between intrinsic curvature K and the

direct measure of intrinsic nonlinearity A, it is necessary to specify the

direction v associated with as given by Equation (3.7). This direction

is simply the coordinate with respect to n(8) of the projection onto the

tangent plane of the secant C(O).

-22-. .,. . .
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Figure 5: Idealized Cross Section of the Solution Locus L as
a Parabola Centered atr()

y
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Thus, for a given point n(8), the squared gap A at n(8) is the

residual sum of squares from a regression of C(O) on 1(8), while the

direction v is given by the coefficients of this regression. Further, the .

multiple correlation for the regression is the cosine of the angle w between

the secant (8) and the tangent plane defined by ri(8). For a piecewise

planar model, such as the energy model, the angle f defined above can be

related to this secant angle w. specifically, whenever n(8) and n(e) lie

on adjacent planar segments, the angle * represents an upper bound on the

secant angle w in the direction v.

It is important to note that the direction v, which indicates the line

-in the tangent plane pointing toward n(8), will not in general coincide with

e - e. The reason is that the sample-space image of the parameter-space

segment 99 is in general a curve, not a straight line. Thus, the vector

t = n(O-8), which is the tangent at 9 to the curved image of e8, does

not point toward r(9).

A more precise relationship between v and 8 - e is determined by

expanding n (e) about 8. We have

•(e) -(e-e) + (1/2 ) (e-e)-nm(e-e) ,

so that
" ,0 .- 1', I ,

1/2)(T n) n a , (8.3)

Iv8

with as_ 8 the tangential component of the acceleration as defined by

Equation (3.6). The difference between v and 8-8 is thus closely related
"p

to the parameter-effects curvatures. Recall that the gap A and the secant

*" angle w themselves measure intrinsic nonlinearity only.

For a smooth model, Equation (8.1) or (8.2) can be regarded as an

approximation to the actual curvature. For a segmented model, we will take

these equations as the definitions of effective curvatures K and y. In the
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* latter case, the effective curvatures so obtained will depend strongly on the

*size of the regions of interest and on the proximity of e and e to a

* discontinuity point of Ti*One may question the value of a curvature measure

which is so sensitive to the points chosen for its evaluation. In fact,

however, such a dependence is entirely appropriate for nondifferentiable

* models.

Nondifferentiability means that a single number indicating a local rate

* of change (i.e., a derivative or curvature) does not adequately represent more

global behavior. Describing nonlinearity in terms of curvature mounts to

* approximating the solution locus L by a spherical or parabolic surface,

- which coincides with L at the point of the fit. For a smooth model, the

same approximation is valid over a wide range, essentially until the second-

order expansion of the model function ni breaks down.* For the segmented

model, on the other hand, a different smooth approximation is relevant

depending on the width of the region of interest. For inferences in a close

neighborhood of a discontinuity point 0 r it is wise to consider a surface -

- of smiall radius of curvature, which approximates L veil in that

* neighborhood. For inferences over a wider region, a sphere of larger radius,

* which might be relatively far from L in the immediate vicinity of 8,

* would be more appropriate.

To apply Beale's formula (Equation (5.4)), the root mean square intrinsic

*relative curvature Y is required, while to use the methods of Bates and

Watts (1981), Hamilton, Watts and Bates (1982), or Box (1971) requires the

*entire acceleration array C;1 Thus, the approximation given by Equation

* (8.2), which provides estimates of the relative intrinsic curvature in a

* particular direction, still leaves much work to be done if the procedures

*which make the concept of curvature so appealing in general applications are

* to be used.
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In many cases, however, nonlinearities are slight, so that the

corrections offered by these procedures are negligible. In particular, the

experience of Bates and Watts (1980) indicates that the relative intrinsic

nonlinearity of most models is quite small. Thus, a quick method of

establishing that the maximum relative intrinsic curvature is sufficiently

small could frequently obviate the need for more complicated computations.

This is the approach taken below in applying effective curvature measures to

the energy model.

9. Effective Curvature of the Enerqy Model

Above, we have seen several indications that the nonlinearities in the

energy model are slight: the small discrepancies among the RSS functions in

Figure 2, the close correspondence between the Gaussian and sum-of-squares

confidence intervals in Figure 4, the mild tangent angles #, and the mall

ratios A max/s of the gap to the radius of a sum-of-squares region. Hence,

to determine that the Gaussian approximation is adequate, it should be

sufficient in most cases to verify that the maximum curvatures are mall. In

1
this section, we consider only the intrinsic curvature Y

Appendix A describes how the maximum effective intrinsic curvature Ynax

can be found for the energy model, on a sum-of-squares contour defined by

Equation (5.3). Using the approximation given by Equation (A.1) for the
I

case F - 1, Equation (8.2) yields
q,n-p

2/p A(.1
I 2 max

max a

The results in Section 7 on the ratio A /s of the maximum gap to themax

radius of a one-standard-error sum-of-squares region can now be translated

into statements about effective curvatures for the energy model. For the 75
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.
data sets, the maximum (effective) relative intrinsic curvature Y ranges

from 0.07 to 0.85, with a median of 0.29.

When the second-derivative array En] has only one non-zero vector, on S

the diagonal, it is possible to show that the root mean square curvature

Y rM and the maximum curvature Ymax are related by

p(p+2) Ymax (9.2)

For the energy model, with n given by (3.4), the normal component of En]

2 2
has a single non-zero vector, the orthogonal component of 3 n/3T - BaF/T.

It Is therefore possible to evaluate Beale's inflation factor P, given by

(S.4),knowinq the effective Intrinsic curvature Ya only in the direction

of maximum curvature.
Ii

For the worst case then 1 1 0.95), Uquation (9.2) yields an
Ymax

i
inflation factor P - 1.08, while for the median value Oa = 0.29) we get

max

- 1.01. Thus, if Beale's formula holds approximately in the non-

differentiable case, with the effective relative intrinsic curvature defined

by (8.2), then the correction required to make the sum-of-squares regions

(5.3) conservative is minimal in most cases. In fact, the factor j is

greater than 1.03 for only two of the 75 cases studied.

10. A"oothing the Model Function

The effective curvatures defined for segmented models by Equations (8.1)

* and (8.2) are based implicitly on an approximation to the solution locus L

by some smooth surface. Another approach is to approximate the model function

ni explicitly over the region of interest by a smooth function n, then

consider the curvature of n. Obviously, this procedure provides both

parameter-effect and intrinsic curvatures.

4- ,
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The approximation method must be left as an ad hoc procedure to be chosen

for the particular model studied, and in general will involve considerably

more computation than the measures suggested above. On the other hand, the S

curvature of a close smooth approximation is arguably the best definition of

curvature for a segmented model. Furthermore, if the same approximation n

applies over a wide range of values of 8, then the curvature array may nee9

to be evaluated only once for all confidence levels of interest.

In the case of the energy model, a very close approximation to the model

function was obtained for each data set by smoothing the nondifferentiable

degree-day variable H(T). For each month m, a smooth function H (T) wasm

obtained by fitting a quadratic function

H m(r) - H m() + b m( -T) + C (i-) 2 + e . (10.1)

The coefficients b m  and c m  in Equation (10.1) were found by the method of least

squares, using values Ti - T + k, k - -5,-4,,4•5*

Figure 6 shows the actual and smoothed degree-days for each month m,
A

from August 1969 to July 1970, obtained by this procedure with T set equal

to 650 F. The figure shows that the approximation H is quite close to them

actual Hm not only over the range of the fit, but also considerably

beyond. Table 1 shows the results of the regressions for the twelve months.

The R values are quite high in all cases. In addition, the coefficient

b is generally very close to the derivative F (T), so that the derivative
m

A

H (T) is also close to the derivative of the original function. In all data
m

sets studied, the least squares estimates 6 found by using the approximation

;(aX,B,T) 01 + 8H(T) were also quite close to the original estimates 8

corresponding to the true model, the differences 8 -e were found to be on
A i

the order of 10% of the standard errors of e

-28-



77-7 7 7; 7 . -. -

Figure 6: Hetn Degree-Days H and Smooth Approximation
H Versus Reference Temperature r

'H3 (T)

2( 0 F-d/d) Month m

Ja

30

20

10.y

.11

*--Range of Ftb~

.5 Actual degree-days H. are indicated by I'i, the approximations
* 113 by the continuous curves. The fits are for aggregate degree-

days, defined by EquatiLon (2.3), August 1969 -July 1970.
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Figure 7 shows a plot of the maximum effective relative intrinsic

curvatures Y , computed from the gap A using Equation (9.1), versus the
m ax

relative intrinsic curvatures Y for the smoothed model function ;. The

figure shows a weak, positive relation between the two curvature measures over
'-I

the 75 data sets. However, the formal curvature y for the smoothed model
m

is almost always larger than the effective curvature ymax derived from the

gap Aa. Evidently, then, for 6 at a distance of one standard error frommax

8, (where the gap A was evaluated) the original function n tends to be

closer to the tangent plane at n(O) than is the approximation ..
1 '-1

The disparity between the two measures Ymax and Ymax does seem to

depend on the standard error of T, which determines how many bends in the

solution locus occur between 6 and the point e where the gap A wasmax

evaluated. In general, the larger disparities are associated with larger

standard errors (around 30F), while for the data sets for which y and
'1max

Y are roughly equal the standard error of T is relatively small (less

than or equal to I°F).

The curvatures Y computed for the smooth model n not only tend to

be larger than the effective curvatures Ym based on the gap, but are also

more spread out. The gap-based effective curvature y is derived from a

single point n(6), where the value of T corresponding to that point is

anywhere from one to three (or in one case seven) degrees from T, and each

" degree represents a point of discontinuity of n. It is therefore somewhat

surprising that smoothing 8 over ten integer values of T yields a measure

Y which is more erratically behaved than that based on the gap. Whatever
.4

the reason for this behavior, the relatively large values of y found for

a few data sets serve as a warning that at some confidence levels the impact

of intrinsic nonlinearLty may be greater than is indicated by the gap

evaluated on a one-standard-error sum-of-squares contour.

-31-
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Figure 7: Effective Relative Intrinsic Curvature y
Versus Relative Intrinsic Curvature y
of the Smoothed Energy Model

YZ: Effective intrinsic curvature (original model)
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As discussed above, it may not make sense to try to describe the shape of

a piecewise differentiable surface in terms of the curvature of a single

quadratic approximation. Even though the approximation n is quite close to

the original function n%, the correspondence between the two functions must

vary with distance, as well as direction, from n(;). Whether the

approximation ri, and its curvatures, can be considered adequate to describe

the behavior of n depends, of course, on the degree of precision required.

The ratio 'Ix/Ia of the two measures is less than two for most of the
Ymax max

data sets, and is greater than four for only two.

The approximation n also offers a measure of parameter-effects

curvature Y . Unfortunately, there is not simple way to determine the

direction v in which y is maximized. However, as explained in Appendix
v

'-1
A, a good indication of the strength of parameter effects is given by yv for

v [-F,0,1', corresponding to tv - OF 1 1.

For the 75 data sets studied here, Tv for this direction ranged from

0.1 to 1.4, with a median of 0.2. The small median value indicates that

parameter-effects nonlinearities are slight in most cases. For the data set

used as an example throughout this paper, v - 0.46, which is the 85

percentile of the 75 observed values. Thus, for most data sets, the

parameter-effects nonlinearities appear to be smaller than was seen for the

example data set. As a result, the Gaussian approximation may typically be

expected to perform as well or better than is indicated in Figure 4 over that

range of confidence levels.

11. Conclusion

We have presented several methods for examining nonlinearity in awkward

models. Although the primary focus has been a segmented model, the visual

indicators and the curvature measures proposed may also be used for
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continuously differentiable models. The visual indicators can reveal a great

deal about the behavior of the model function, but computation of the required

quantities may be quite cumbersome. By constrast, the quantitative measures

proposed may be easier to compute than formal curvatures based on second

derivatives. In addition, in cases where the sicond-order approximation does

not hold over an entire region of interest, an effective curvature based on .

points at the edge as well as the interior of that region may be more

meaningful than the formal curvature evaluated at the point of the fit.

For the energy model which motivated this study, all the measures

explored indicate that the nonlinearities are generally mall for data sets

like those examined in this work. The intrinsic nonlinearity, as measured by

the tangent angle * and by approximate curvatures, is small enough that the

sum-of-squares method gives good approximate confidence regions. A

combination of direct comparisons of Gaussian and sum-of-squares regions (for

-1
a particular data set) and examination of parameter-effect curvatures y

(for a large number of sets) leads to the conclusion that the more easily

computed Gaussian approximation should be acceptable in most cases.

Further study is needed to assess the performance of the effective

curvature measures proposed here, for a variety of segmented and smooth

models. In this context, both the validity of the approximations and the

degree to which these methods actually facilitate computations are

important. Also useful would be efficient means of finding the maximum

intrinsic or parameter-effects curvature, on the basis of which more detailed

computations might be forgone. A paper currently in preparation describes

procedures for obtaining mean square effective curvatures, both intrinsic and

parameter-effect, based on methods developed here, with an emphasis on

applications to smooth models.
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Appendix A. Finding Maximum Curvatures for the Energy Model

For the energy model defined by (2.1), the maximum intrinsic curvature at

e = [a,,T]' is in the direction of F(T) I (1,H(r)], the component of

F(T) orthogonal to the vectors I and H(T). The formal curvature Y

was therefore evaluated in the direction of F(t) I (1,H(r)], using the

estimate T and the second derivative n for the smoothed model function

n. Finding the effective curvature y in the corresponding direction for
ma"

the original model is more complicated; as noted in the text, evaluating the

gap A at r(e+v) does not in general yield the effective curvature K in
v

the desired direction v. Rather than searching for points on the sum-of-

squares contour in the indicated direction, a more ad hoc procedure was used

to find A
max

To find the maximum gap A around the sum-of-squares contour, it ie

necessary to maximize the residual sum-of-squares from the regression of

n(O) - '(0) on M(). For the energy model, this is a regression of

(a-a)l + 8H(T)-OH(T) on [1,H(T),F(T)]. The terms (a-a)l and B()

leave no residual, while 8 is a scalar. Hence, maximizing the residual from

a regression of H(t) on [1,9(T), OF(T)], then multiplying by 0+, the

maximum of 8 along the contour, yields an overestimate of the maximum gap

Aea x . The maximal divergence of H(T) from the H(T) - OF(T) plane occurs

at values of T farthest from T. Thus, the maximal gap was found by
- +

finding the extreme values T and T along the contour, obtaining the
- (+ AA

residuals from regressions of H(T) and H(T ) on [I,8(T), OF(T)], then

multiplying the larger magnitude residual by 8

Having obtained (overestimates of) the maximum gap, we still need the

tangential secant component IP4(8)I to derive effective curvatures from

Equation (8.1) or (8.2). According to the linear approximation,
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lPC(e)l - RSS(6) fo e on a contour defined by (5.3), with

f - F /(n-p). making this approximation, Equation (8.2) becomes
q, n-p

-2-y- z 2 A (A.1)

q,n-p

The maximum parameter-effects curvature is also of interest. For the

-1
parameter effects, only the formal curvature y of the smoothed model is

available. As noted in the text, there is no simple way to determine the

direction v in which Y is maximized. We do know that the tangent

vector t v  must be orthogonal to hf/au - 1, since the model function has

zero curvature in the a direction. In addition, it is clear from Equation

(4.2) that the T-component of the maximizing v (hence the OF-component

of t v ) must be non-zero. A reasonable measure of the strength of parameter

effects is therefore offered by Yv for v - -F,0,11', corresponding to

t v -B? 1 .

i
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